Two Online Tools for Teaching Special Relativity

Noah Segal, Fall 2015
n.h.segal at gmail
Today’s Schedule

1. Overview
2. Axis-less Spacetime Diagrams
3. The Special Relativity Engine Activity
Guiding Concerns

1. How to incorporate PER best practices, including
 - utilizing a learning cycle
 - minimizing lecturing
 - employing multiple representations
 - avoiding cognitive overload

2. How to develop one’s own conceptual knowledge and confidence
Source Material

Mermin, N. David. *It’s About Time*

Styer, Daniel. *Relativity for the Questioning Mind*

Taylor, Edwin and John Wheeler. *Spacetime Physics*
Source Material

Mermin, N. David. *It’s About Time*

Styer, Daniel. *Relativity for the Questioning Mind*

Taylor, Edwin and John Wheeler. *Spacetime Physics*
Also Worth Looking At

- Chabay, Ruth and Bruce Sherwood. *Matter and Interactions*
- Moore, Thomas. *Six Ideas that Shaped Physics*: Unit R; *HypPrint* program; and AAPT Talk *Visualizing Relativity*
- Bodanis, David. *E= mc²*
Content Goals

All Inertial Frames are Equivalent.

The Speed of Light is Invariant.

1. Time Dilation
2. Length Contraction
3. Simultaneity is Relative

...and the mass of a system reflects the system’s energy in its rest frame.
Content Goals

All Inertial Frames are Equivalent.

The Speed of Light is Invariant.

1. Time Dilation
2. Length Contraction
3. Simultaneity is Relative

...and the mass of a system reflects the system’s energy in its rest frame.
Pedagogical Choices

- Emphasize the invariance of the interval
- Use simple numbers (maybe just $v = 0.6c$)
- Do Galilean Relativity first
- Use diagrams
- Revisit the same situation multiple times
Framing Question (1st of 3)

‘Answer the following objection:

1. “Observer A says that B’s clock goes slow, and observer B says that A’s clock goes slow. This is a logical contradiction. Therefore relativity should be abandoned.”’

(Taylor & Wheeler, p79)
‘Answer the following objection:

2. “Observer A says that B’s meter sticks are contracted, along their direction of relative motion, and observer B says that A’s meter sticks are contracted. This is a logical contradiction. Therefore relativity should be abandoned.”’

(Taylor & Wheeler, p79)
‘Answer the following objection:

3. “Relativity postulates that light travels with a standard speed regardless of the [inertial reference] frame from its progress is measured…[but anyone] with common sense knows that travel at high speed in the direction of a speeding pulse will decrease the speed with which the pulse recedes. Hence the flash of light cannot have the same speed for observers in relative motion. With this disproof of the basic postulate, all of relativity collapses.”
Spacetime Diagrams

- Fancy, flipped position-time graphs
Spacetime Diagrams

- Fancy, flipped position-time graphs
- 45° line = light speed
Spacetime Diagrams

- Fancy, flipped position-time graphs
- 45° line = light speed
- Points on the diagram are events.
- A particle’s position-time graph is called its worldline.
The spacetime interval:

\[(\Delta s)^2 = (c\Delta t)^2 - (\Delta x)^2\]

if \((c\Delta t)^2 > (\Delta x)^2\)

\[(\Delta s)^2 = (\Delta x)^2 - (c\Delta t)^2\]

if \((c\Delta t)^2 < (\Delta x)^2\)
The spacetime interval:

\[(\Delta s)^2 = (c\Delta t)^2 - (\Delta x)^2\]

if \((c\Delta t)^2 > (\Delta x)^2\)

Time-like:

Space-like:

\[(\Delta s)^2 = (\Delta x)^2 - (c\Delta t)^2\]

if \((c\Delta t)^2 < (\Delta x)^2\)
Spacetime Diagrams

The spacetime interval:

\[(\Delta s)^2 = (\Delta t)^2 - (\Delta x)^2\]

\[(\Delta s)^2 = (\Delta x)^2 - (\Delta t)^2\]

Analogous to Pythagorean theorem:

\[(\Delta s)^2 = (\Delta x)^2 + (\Delta y)^2\]
The spacetime interval:

\[(\Delta s)^2 = (\Delta t)^2 - (\Delta x)^2 \]

\[(\Delta s)^2 = (\Delta x)^2 - (\Delta t)^2 \]

Analogous to Pythagorean theorem:

\[(\Delta s)^2 = (\Delta x)^2 + (\Delta y)^2 \]
The spacetime interval:

\[(\Delta s)^2 = (\Delta t)^2 - (\Delta x)^2\]

\[(\Delta s)^2 = (\Delta x)^2 - (\Delta t)^2\]

Analogous to Pythagorean theorem:

\[(\Delta s)^2 = (\Delta x)^2 + (\Delta y)^2\]
Spacetime Diagrams
Spacetime Diagrams
Spacetime Diagrams

Time

Position

Δt

Δy, Δt
Lines parallel to the time axis mark constant position.
Lines parallel to the position axis mark simultaneous events.
Making Space-Time Diagrams

By Hand
HypPrint (for hyperbolic graph paper):
http://www.physics.pomona.edu/sixideas/sicpr.html

Online:
http://nhseagal.github.io/SRsim/
Diagrams Without Axes
The Amazing Multi-Colored Special Relativity Engine

- Described by Mermin in *AJP* 56 (1988) 600-611.
- Reprinted in *Boojums all the Way* and also described in *It’s About Time*.
- Coded in Processing/p5.js
- Let’s try it and discuss:

 http://nhsegal.github.io/testpage/ or

 http://nhsegal.github.io/RelativityEngine/
The Amazing Multi-Colored Special Relativity Engine
Some Paradoxes

(Taylor 5-4)
Some Paradoxes

(Taylor 6-5)
The stick passes through the hoop in this frame. How do things look in the stick’s rest frame (in which its length exceeds the hoop’s)?
Some Paradoxes

(Taylor L-11)
Unresolved Issues

- Assessment
- The Chinese Banquet Effect
- Finding Room in the Curriculum